Acid-Catalyzed One-Electron Reduction of Nitrite to Nitric Oxide by an NADH Analog and 1,1'-Dimethylferrocene in the Absence and Presence of Dioxygen

Shunichi FUKUZUMI* and Tomohiro YORISUE

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

One-electron reduction of nitrite to nitric oxide proceeds efficiently by an acid-stable NADH analog, 9,10-dihydro-10-methylacridine (two-electron reductant) as well as 1,1'-dimethylferrocene (one-electron reductant) in the presence of perchloric acid in acetonitrile. The effects of dioxygen on both the one-electron and two-electron reductant systems are compared.

Mechanisms of the enzymatic reduction of nitrite especially those of denitrification 1) as well as the effect of dioxygen 2) have recently attracted considerable interest. In the enzymatic nitrite reduction, dihydronicotinamide adenine dinucleotide (NADH) being a two-electron reductant is used as a common electron source. 3) However, no nonenzymatic reduction of nitrite by NADH analogs has so far been reported, although electrocatalytic reduction of nitrite 4) as well as the reduction by various inorganic one-electron reductants 5) has been studied extensively. This study reports efficient one-electron reduction of nitrite by an acid-stable NADH analogue, 9,10-dihydro-10-methylacridine (two-electron reductant) 6) as well as 1,1'-dimethylferrocene (one-electron reductant) in the presence of perchloric acid (HClO $_{4}$) in acetonitrile (MeCN), comparing the effects of dioxygen on both the two-electron and one-electron reductant systems.

No oxidation of 9,10-dihydro-10-methylacridine (AcrH $_2$) or 1,1'-dimethylferrocene [Fe(C $_5$ H $_4$ Me) $_2$] by nitrite (NO $_2$ ⁻) has been observed in MeCN at 298 K. The addition of HClO $_4$ to the AcrH $_2$ -NO $_2$ ⁻ and Fe(C $_5$ H $_4$ Me) $_2$ -NO $_2$ ⁻ systems, however, results in the facile oxidation of AcrH $_2$ and Fe(C $_5$ H $_4$ Me) $_2$ to yield 10-methylacridinium ion (AcrH $^+$) and 1,1'-dimethylferrocenium ion [Fe(C $_5$ H $_4$ Me) $_2$ ⁺], respectively. The stoichiometries of the reactions were determined from the spectral titrations. 8) In each case, one-electron reduction of NO $_2$ ⁻ occurs to yield NO; a two-electron reductant (AcrH $_2$) and a

one-electron reductant $[Fe(C_5H_4Me)_2]$ reduce two- and one-equivalent NO_2^- (Eqs. 1 and 2,

$$AcrH_2 + 2NO_2^- + 3H^+$$

 $\rightarrow AcrH^+ + 2NO + 2H_2O$ (1)

$$Fe(C_5H_4Me)_2 + NO_2^- + 2H^+$$

 $\longrightarrow Fe(C_5H_4Me)_2^+ + NO_2^- + H_2O_2^-$ (2)

respectively. 9) Rates of the oxidation of $AcrH_2$ and $Fe(C_5H_4Me)_2$ by NaNO2 in the presence of excess $\mathrm{HC10_4}$ in MeCN containing $\mathrm{H_2O}$ (2.8 and 5.6 M) were monitored by the increase in the absorbance at $\lambda_{\,\text{max}}$ 358 and 650 nm due to the formation of $AcrH^+$ and $Fe(C_5H_4Me)_2^+$, respectively, using a stopped flow spectrophotometer. In the absence of H₂O, the rates were too fast to be followed by the conventional stopped flow technique. Rates of both reactions obey clean secondorder kinetics, showing a firstorder dependence on the concentration of each reactant in the

Fig. 1. Plots of log $k_{\rm obsd} \ \underline{vs}$. $\log[{\rm HClO}_4]$ for the reduction of ${\rm NaNO}_2$ (1.0 x $10^{-3}-1.0$ x 10^{-2} mol dm⁻³) by ${\rm AcrH}_2$ (0; 5.0 x $10^{-5}-2.0$ x 10^{-4} mol dm⁻³), and ${\rm Fe}({\rm C}_5{\rm H}_4{\rm Me})_2$ (\bullet ; 1.0 x $10^{-3}-1.0$ x 10^{-2} mol dm⁻³) in the presence of ${\rm HClO}_4$ in MeCN containing 5.6 (-) and 2.8 mol dm⁻³ (---) ${\rm H}_2{\rm O}$ at 298 K.

presence of excess HClO_4 in MeCN containing $\mathrm{H}_2\mathrm{O}$. The observed second-order rate constants $\mathrm{k}_{\mathrm{obsd}}$ increase with an increase in the HClO_4 concentration and both $\mathrm{k}_{\mathrm{obsd}}$ values of AcrH_2 and $\mathrm{Fe}(\mathrm{C}_5\mathrm{H}_4\mathrm{Me})_2$ show a first-order dependence on [HClO_4] in the low concentration region, changing to second-order dependence in the higher concentration region, as shown in Fig. 1.¹⁰) Such an identical change for different reductants in the order with respect to [HClO_4] may reflect a change in the primary oxidant, i.e., from nitrous acid (HONO) to nitrosonium ion (NO^+) as given by Eqs. 3 and 4,

$$NO_2^- + H^+ \longrightarrow HONO$$
 (3) $HONO + H^+ \longrightarrow NO^+ + H_2O$ (4)

respectively, since the protonation of HONO is known to yield NO⁺.¹¹⁾ The one-electron reduction of nitrite to nitric oxide by both $AcrH_2$ and $Fe(C_5H_4Me)_2$ may proceed <u>via</u> electron transfer to HONO or NO⁺.¹²⁾ In fact, electron transfer from both $AcrH_2$ and $Fe(C_5H_4Me)_2$ to NO⁺ is highly exothermic judging from the one-electron oxidation potentials of $AcrH_2$ (E_{OX}^0 =

0.80 V \underline{vs} . SCE)¹³⁾ and Fe(C₅H₄Me)₂ (E⁰_{ox} = 0.26 V \underline{vs} . SCE)⁷⁾ and the one-electron reduction potential of NO⁺ (E⁰_{red} = 0.88 V \underline{vs} . ferrocene, E⁰_{ox} of ferrocene = 0.37 V vs. SCE).¹⁴⁾ The increase in the concentration of H₂O may cause the decrease in the NO⁺ concentration (Eq. 4), resulting in the decrease in the rate constant as observed in Fig. 1.

In the presence of 0_2 (2.6 x 10^{-3} mol dm⁻³), the concentrations of AcrH⁺ formed were the same as those of the initial concentrations of NaNO₂ (< 2.6 x 10^{-3} mol dm⁻³) in the presence of excess AcrH₂ (> [NaNO₂]) and HClO₄ (0.58 mol dm⁻³). Thus, the stoichiometry of the reaction (Eq. 1) is changed to Eq. 5, where AcrH₂ reacts with equivalent NO₂⁻ to yield HNO₃.

$$AcrH_2 + NO_2^- + O_2 + 2H^+ \longrightarrow AcrH^+ + HNO_3 + H_2O$$
 (5)

In this case, the two-electron oxidation of $AcrH_2$ is accompanied by the two-electron oxidation of NO_2^- to HNO_3 and the four-electron reduction of O_2 to H_2O . Such a clean change of the stoichiometry in the presence of O_2 may be caused by the following reaction sequence; the facile oxidation of NO by O_2 occurs to yield NO_2 (Eq. 6) which dimerizes and hydrolyzes to nitrous and nitric acid (Eq. 7). The combination of Eqs. 1, 6, and 7

$$NO + (1/2)O_2 \longrightarrow NO_2 \qquad (6) \qquad 2NO_2 + H_2O \longrightarrow HNO_2 + HNO_3 \qquad (7)$$

gives the net stoichiometry (Eq. 5). In contrast, the four-electron reduction of dioxygen by $\text{Fe}(\text{C}_5\text{H}_4\text{Me})_2$ occurs efficiently in the presence of a catalytic amount of nitrite in MeCN containing $\text{HClO}_4.^{15}$) In the case of $\text{Fe}(\text{C}_5\text{H}_4\text{Me})_2$ electron transfer to NO_2 may be exothermic judging from the one-electron reduction potential of NO_2 ($\text{E}_{\text{red}}^0 = 0.320 \text{ V} \ \underline{\text{vs}}$. ferrocene), ¹⁴) although the electron transfer from AcrH_2 ($\text{E}_{\text{ox}}^0 = 0.80 \text{ V} \ \underline{\text{vs}}$. $\text{SCE})^{13}$) may be endothermic. Thus, electron transfer from $\text{Fe}(\text{C}_5\text{H}_4\text{Me})_2$ to NO_2 may proceed efficiently before the dimerization and hydrolysis (Eq. 7) occur, accompanied by the regeneration of nitrite as shown below.

References

- 1) W. J. Payne, "Denitrification," Wiley-Interscience, New York (1981).
- 2) P. R. Alefounder, A. J. Greenfield, J. E. G. McCarthy, and S. J. Ferguson, "Microbial Gas Metabolism Mechanistic, Metabolic and Biotechnological Aspects," ed by R. K. Poole and C. S. Dow, Academic Press, London (1985), p. 225.
- 3) M. J. Murphy, L. M. Siegel, and H. Kamin, J. Biol. Chem., <u>249</u>, 1610 (1974); R. J. Krueger and L. M. Siegel, Biochemistry, <u>21</u>, 2892 (1982).
- 4) M. H. Barley, K. J. Takeuchi, and T. J. Meyer, J. Am. Chem. Soc., <u>108</u>, 5876 (1986); I. Taniguchi, N. Nakashima, and K. Yasukouchi, J. Chem. Soc., Chem. Commun., <u>1986</u>, 1814; H.-L. Li, W. C. Anderson, J. Q. Chambers, and D. T. Hobbs, Inorg. Chem., <u>28</u>, 863 (1989); J. E. Toth and F. C. Anson, J. Am. Chem. Soc., 111, 2444 (1989).
- 5) M. Orban and I. R. Epstein, J. Am. Chem. Soc., <u>104</u>, 5918 (1982); M. S. Ram and D. M. Stanbury, ibid., <u>106</u>, 8136 (1984); V. Zang, M. Kotowski, R. van Eldik, Inorg. Chem., <u>27</u>, 3279 (1988).
- 6) S. Fukuzumi, S. Mochizuki, and T. Tanaka, T. J. Am. Chem. Soc., <u>111</u>, 1497 (1989).
- 7) S. Fukuzumi, S. Mochizuki, and T. Tanaka, Inorg. Chem., <u>28</u>, 2459 (1989).
- 8) Spectral titrations were carried out by determining the concentrations of $AcrH^+$ and $Fe(C_5H_4Me)_2^+$ formed when the initial ratios of $AcrH_2/NaNO_2$ and $Fe(C_5H_4Me)_2/NaNO_2$ were changed in the presence of excess $HClO_4$ (0.10 or 1.0 mol dm⁻³) in MeCN, respectively.
- 9) The amount of NO formed was determined by the absorbance at λ_{max} 450 nm due to Fe(NO)²⁺ formed by the addition of Fe(ClO₄)₂ to the reaction mixture.⁵⁾
- 10) The least-squares analysis of the plots in Fig. 1 gives the slopes of 1.02 ± 0.05 and 1.93 ± 0.07 for the first-order and second-order dependence, respectively.
- 11) J. H. Ridd, Adv. Phys. Org. Chem., <u>16</u>, 1 (1978).
- 12) The second electron transfer from AcrH·, formed by deprotonation of $AcrH_2^+$ · to HONO or NO⁺ may be much faster as compared with AcrH₂.
- 13) S. Fukuzumi, S. Koumitsu, K. Hironaka, and T. Tanaka, J. Am. Chem. Soc., <u>109</u>, 305 (1987).
- 14) A. Boughriet and M. Wartel, J. Chem. Soc., Chem. Commun., 1989, 809.
- 15) The stoichiometry was confirmed by spectral titration; four-equivalent $Fe(C_5H_4Me)_2$ reacts with O_2 (2.6 x 10^{-3} mol dm^{-3}) and four-equivalent H^+ in the presence of a catalytic amount of $NaNO_2$ (1 x 10^{-4} mol dm^{-3}) in the presence of $HClO_4$ (0.47 mol dm^{-3}) in MeCN to yield $Fe(C_5H_4Me)_2^+$. (Received February 22, 1990)